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1. Introduction

The field of kinematics and dynamics of mechanical systems has progressed
from a manual graphics art to a highly developed discipline in analytical geom-
etry and dynamics. Various general purpose formulations for the dynamic
analysis of constrained Mechanical Systems (CMS) lead to mixed Differen-
tial-Algebraic Equations (DAEs) called the Euler-Lagrange equations. During
the past 15 years many contributions have been made to the theory of compu-
tational kinematics and dynamics of CMS (also called Mutibody dynamics).
The recent advances in computer hardware and software have tremendously
revolutionized the analysis of CMS. The status and development of multibody
dynamics is documented in Refs. [1,2] and also in a recent special issue on
DAE:s [3]. While in the past, engineers dealt with small scale systems that could
be analyzed by clever analytical formulations, general purpose codes now per-
mit the design and analysis of complex systems. As the complexity of the sys-
tems increases, so does the need for fast and reliable numerical procedures for
solving the equations of motion. The numerical approaches for solving general
vector fields are: (1) Parameterization approach (Tangential Parameterization
(TP)); (2) Constraint Stabilization (Exact (ECS) and Inexact (ICS)); and (3)
Perturbation Approach (PA). In Ref. [4] a complete and detailed analysis of
various approaches for the numerical solution of vector fields is given. In this
paper we extend the ideas in Ref. [4] to solve the Euler-Lagrange equations of
motion for CMS.

The paper is organized as follows. In Section 2 a brief description of Euler—
Lagrange equations is given. The numerical approaches for solving DAEs are
discussed briefly in Section 3. The specialization of TP, ICS, ECS and PA are
discussed in Section 4. Numerical comparison of these approaches for solving
multibody systems are discussed in Section 5. In Section 5.1 based on these
comparison and cost analysis as explained in Ref. [4] recommendations are
made for a proper choice of a suitable approach.

2. Euler-Lagrange equations

We begin by formally defining the vector field that is to be solved numerical-
ly. Let .# be an (n — m) dimensional manifold in R" defined by

g(x) =0, (2.1)

where g: R” — R" is a smooth function. Assume that 3 an open set ¢ in R"

containing .# such that g,(x), the m x n Jacobian of g at x, satisfies
rank(g,(x)) =m Vx € €. Let

=f(x)a te [tO’tf] (22)

& =

LA
X=

ISY

t



R Sudarsan, S.S. Keerthi | Appl. Math. Comput. 92 (1998) 195-218 197

define a vector field on .#. In other words, if 7,.# denotes the tangent space of
M atx € M, then f(x) € T..# Vx € 4. Usually a smooth extension of f to an
open set in R” containing .# is available. We will assume this to be the case for,
when dealing with numerical methods points slightly off from .# are obtained
and there may be a need to evaluate f there. Our assumption that g and f are
time-invariant, i.e., they do not explicitly depend on ¢, is only for the purpose of
simplifying the notations and some of the discussions. All the ideas of this pa-
per easily extend to the case of time-varying g and f. Let us assume that the
vector field (2.2), is solvable, i.e., given any x, € .# there exists a unique solu-
tion, x: [ty ¢;] — .4 that satisfies x(#) = xo and Eq. (2.2).

The Euler-Lagrange equation that describe the motion of CMS can be writ-
ten in the form {1]

M(q)g +J'(q)i = Q(4,9), (2.3)
0= ¢(q), (2.4)

where g € R" is the vector of generalized coordinates, ¢ is time, M(g) € R"™" is
the generalized mass matrix, ¢: R” — R™ is a nonlinear mapping that defines
the constraints (kinematical), J = (0¢/3q) is the Jacobian of ¢ with respect
to ¢ (J* denotes the transpose J), 4 € R™ is the vector of Lagrange multipliers
associated with the constraints, and Q: R” x R” — R" is a mapping that defines
to generalized external forces. We make the following reasonable assumptions:
(1) m < n; (2) M is always positive definite; (3) all the mappings in the above
equation are of class C"*', r > 2 i.e., they are r times continuously differentia-
ble (for most of the results in this paper this condition is stronger than neces-
sary); (4) rank (J) =m always holds (roughly, this means that all the
constraints are independent).

Sometimes, the explicit dependence on ¢, g,¢ of the mappings and matrices
in the above system will not be mentioned so as to simplify notations.

The system of Eqgs. (2.3) and (2.4), is a DAE of index three. The index can be
lowered by differentiating Eq. (2.4) twice with respect to time. This leads to the
index one formulation of the Euler~Lagrange equation,

M(q) J'V14| |94 .9

[ J 0] M - [v(q,cn}’ 23
9(q) =0, (2.6)
p=Jg=0, (2.7)

where v(d,q) = —(¢,4),4-

Under the assumptions made, the linear system in § and 4 has a unique so-
lution § = £(4,4), A = f2(¢,q), where the mappings are of class C"~'. Special
numerical methods for solving the linear system (2.5) are discussed in Ref.
[5]. To put the equation in first order form, let ¢ = v,x = (¢, )" then we have:
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¥ =f(x), (2.8)

g(x)=0. _ (2.9)
Eq. (2.8) defines a vector field on the constraint manifold defined by Eq. (2.9).
The original constraints (2.4) are called position level constraints. The two new
constraints introduced during the index reduction process are, respectively,
called velocity level and acceleration level constraints.

3. Approaches for solving CMS equations

In this section we consider some techniques of rewriting the system (2.3) and
(2.4) in an alternative form that may be easier to solve numerically. All of the
different forms of the equations that we consider are equivalent in the sense
that, given a consistent set of initial conditions the different forms of the system
have the same analytical solution. However computationally some forms of the
equations may have much different properties than others. We discuss some of
the advantages and disadvantages of such a rewriting.

We can directly solve the index three form using an implicit numerical inte-
gration method such as Backward Difference Formula (BDF). The computer
software ADAMS employs this technique for solving CMS. The advantage
is that it is easy to formulate the system, as we do not have to differentiate
the constraint or rewrite the system in any way, the sparsity of the system is
preserved, and the constraints are satisfied exactly at every time step. The dis-
advantage is that there are several difficulties in using a variable step size BDF
code for solving system in this form. Also it is difficult to obtain an accurate
solution for the Lagrange multiplier A. Further, for BDF methods, 1 and ¢
must be removed from the error estimate. A code based on this strategy does
not always give reliable results for variables which are filtered out of the esti-
mate.

A second way of solving Egs. (2.3) and (2.4) is to differentiate the con-
straints twice and lower the index to one. The advantage of this technique is
that we can use appropriately modified versions of some of the well known in-
tegration methods like Adams predictor—corrector and Runge-Kutta to solve
the special vector field associated with CMS. But we have to pay the price of
doing extra computation so that a computed solution satisfies the constraints.
As mentioned earlier there are various approaches available for solving CMS.
These are: (i) Parameterization approach; (ii) ICS; and (iii) ECS and (iv) PA.
For complete details refer to Ref. [4].

The basic idea of PA is the following. The ODE defining the vector field on
the constraint manifold is numerically integrated and after each integration
step we perturb the numerical solution so as to find a point on the manifold
and thus get a more accurate solution than before.
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The Parameterization approach establishes a minimal set of ODEs, corre-
sponding to the equations of motion for CMS, using a coordinate transforma-
tion (this transformation is obtained numerically) and is solved using standard
ODE techniques. The solution of CMS in the original coordinate is then ob-
tained using the inverse of the above transformation. The Coordinate parti-
tioning approach [6] and TP approach [7] are examples of this approach.

Baumgarte [8] observed that the constraints are not satisfied in a linearly un-
stable fashion and it is unlikely that a subsequent numerical errors compensate
this behavior. He also observed that the modified acceleration level constraint
equation ¢ + 2u¢) + B2p =0 with 2> 0,8#0 is stable, hence implying
¢ =~ ¢ ~ 0. This observation forms the basis of the ICS approach.

Another index two formulation of this problem can be obtained by intro-
ducing new variables p, replacing the first equation in § =v by ¢ =v +J'u
and appending the new algebraic equation Jv = 0 to the system (2.5)—(2.7).
This new system is called the stabilized index two system. The idea of reformu-
lating the system in this way was proposed by Gear et al. [9]. A modification of
this approach, called ECS approach is discussed in Ref. [4]. The advantage of
this formulation is that the position level and velocity level constraint are au-
tomatically satisfied. The extra variables are not really much of a disadvantage,
because the computations can be arranged in a form that avoids the storage of
the new variables and requires very little computation.

Another way is to eliminate the Lagrange multiplier 4 analytically to obtain
a standard ODE system (state space form or Lagrange equation of the second
kind). This approach may be difficult to implement in general for very large
systems, as in CMS, where the number of unknowns are usually between ten
and several hundreds. In Refs. [10,11] it has been proposed to use both the
original constraints and one or more of the constraints simultaneously in the
DAEs formulation. This approach results in an over determined system of
DAEs. The main disadvantage is the cost of linear algebra for the solution
of the over determined system. This approach needs further investigation.

Let us conclude this section by making a few comments on the choice of gen-
eralized coordinates. The performance of a computer program to model these
system depends strongly on the choice of the generalized coordinates g. Two
fundamentally different kinds of generalized coordinates are more frequently
used to derive the equations of motion. One is Cartesian, or absolute, coordi-
nates; the other is relative, or joint, coordinates. Depending on the user need
and the system at hand one has to choose the suitable coordinates.

Sophisticated approaches using relative coordinates are able to establish the
state space form directly for an important class of mechanical systems called
tree configured systems. This form can be numerically treated by standard
ODE methods, and is of lower dimension than the DAE form. However, the
corresponding matrices are normally dense [6]. For systems which are not tree
configured, there are loop closure conditions which remain as algebraic



200 R. Sudarsan, S.S. Keerthi | Appl. Math. Comput. 92 (1998) 195-218

equations and cannot in general be solved analytically. For these systems usu-
ally the state space from is established numerically [6]. This is easy to do in the
case of linear constraints, but in the general case the coordinates may change
from integration step to integration step or even in between. The choice of co-
ordinates directly influence both the number of equations and their order of
nonlinearity. Furthermore, depending upon the form of the equations one
method of numerical integration may be preferable to another in terms of ef-
ficiency and accuracy. A comparison between the choice of coordinates is given
in Ref. [12], Table 1.1, p. 12.

4. Specialization of various approaches to CMS

In the following sections we extend the ideas presented in [4] for solving vec-
tor fields to simulation of CMS. In this paper we consider the following ap-
proaches (i) TP approach; (ii) ICS, ECS approach and (iii) PA.

4.1. Specialization of TP for CMS

Because of its good performance and ease of implementation, we only spe-
cialize the TP approach to CMS. Ideas associated with the specialization of
Coordinate Partitioning approach to CMS, and also its performance are sim-
ilar to those of TP. The idea of TP approach was introduced to solve CMS
equations by Mani et al. [7].

In this approach we need to choose two orthogonal matrices Uy and ¥} to
compute local parameterization [4]. Here we give a brief description of Proce-
dure TP. For complete details, refer to Ref. [4].

Procedure TP. Computing f(») given y
Step 1: Solve g(y,z) =0 for z
Step 2: Set x = Y(y) = xo + Upy + Vpz; (diffeomorphism)
Step 3: Compute f(x) and set f(y) = Uyf(x).

Here we will discuss an efficient choice of Uj and ¥, using the QR decompo-
sition of J*. Let the QR decomposition of J' = Q(R,, O)', where R; € R™". Let
O be partitioned as [V: U], ¥ € R™™, U € R™" ™ From the above QR de-
composition, we have J* = FR;. This shows that the columns of ¥ form an or-
thonormal basis of the column space of J' or the row space of J.
Premultiplying by U* we get JU = 0. Thus, the columns of U are base vectors
for the null space of J. The null space and row space of J are orthogonal sub-
spaces of the configuration space R”. Since the row space of J is normal to the
associated constraint surface, the null space of J spans the tangent plane of the
the constraint surface. So the columns of U form an orthogonal basis of the
constraint tangent plane.
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JJ' = R\R, is the Cholesky factorization of JJ' and is positive definite
(rank(J) =m). Thus R, is unique and we have ¥ = J'R;!. This shows that V
is also unique. However, U is not an unique matrix since a linear combination
of the columns of U are also an orthonormal basis normal to V. The OR fac-
torization can be computed using any of the following techniques: (i) House-
holder transformation; (ii) Givens transformation; and (iii) Gram-Schmidt
orthogonalization process. Mani et al. [7] have used singular value decomposi-
tion method which uses Householder transformation to get the above orthog-
onal matrices U and V.

Let us now briefly explain this approach as applied to CMS. Let ¥ = (y,7)'
and Z = (z,2)"; y € R"™, z € R, y,y are namely the independent position and
velocity variables (vectors in the tangent plane) and z,z are namely the depen-
dent position and velocity variables (vectors in the normal plane). In terms of y
and z, g = qo + Uy + Vz. Differentiating q with respect to time and combining
the equations, we get equation of the form

x=X+UY+¥vZ=YY). (4.1)

The diffeomorphism ¥ is given by Eq. (4.1) and % = diag(U,U) and
v = diag(V,V) play the roles of U, and Fp, respectively. We compute f(x)
and set the ODE for Y as

Y =2t f(x) 2 (1) (4.2)
Once Eq. (4.2) is integrated using the initial value as ¥ = Y(t) = (0, U'g,)", we
can compute x(¢f) = ¥(¥(¢)) using Eq. (4.1). The following procedure explains
the steps involved in TP.

Procedure TP-CMS. Computing f(Y) given Y

Step 1: Set Y = (y,y)' and Z =(z,2)' such that g =g+ Uy+ ¥z and
v=Uy+ Vz. Compute Z as follows. Using g we have ¢(go + Uy + ¥z) = 0.
Re-framing this as a function (p) of the unknown z we have p(z) = 0. We solve
for z from using the MNR iteration procedure. Using the velocity level con-
straint Jv = 0 can be written as 42 = ¢, where 4 = JV, ¢ = —[JUy]. This linear
system is solved for z by doing LU decomposition of 4 (rank(J/)=M) and set
Z = (z,2)".

Step 2: Evaluate Y(Y(t)) = x(¢), i.e., g =qo+ Uy + Vz and v=Uy+ Vz.

Step 3: Compute f(x) and set f(¥) = 'f(x).

For tangential parameterization, Mani et al. [7] use an interesting idea to de-
cide when a change in parameterization is needed. To determine when to com-
pute a new parameterization, i.e., to redefine the orthogonal matrix Q, we have
used the following criteria in our implementation. Premultiplying v = Uy + V2
with ¢' we get v'v = y'p + 2'2. Under the assumption ¢, =0, Mani et al. [7]
proposed a criterion to decide when a change in parameterization is needed.
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Roughly the idea is as follows. At f it is clear that the /; norm of the velocity
vector y equals the /, norm of the velocity vector v, since the /; norm of the z is
zero. At other points on the constraint manifold this will be violated. Define
the proportion between the /; norms as ||y||,/||v||,. This ratio gives a good in-
dication of a need for a change in parameterization. Choosing an appropriate
u e (0,1), say, 4 = 0.5, a change in parameterization is called for when the ra-
tio becomes less than u.

It is important to note that we need to specify the integration tolerances
while integrating Eq. (4.2) in terms of Y. It is natural to specify the integration
tolerances in terms of ¢ and v, since we are originally solving the Euler-
Lagrange equation. So we need to transform this tolerances in terms of the
integrated variable Y. As explained in Ref. [4] we compute ¥y
= diag(U — V(JV)™'JU), so that |le||,, ~ | ¥rey], <z. This has to be done
very efficiently since it has to be computed at every integration step. Also note
that it involves 4~'. After the completion of Step 3 of the algorithm we have
the LU decomposition of 4. Writing B = 4~'J we solve for B as follows. Solve
(LU)b; = ji, 1 < i< niorb;, where b; and j; are the columns of B and J, respec-
tively. It can be easily solved by forward and backward substitutions.

4.2. Specialization of CS for CMS

In this section we briefly discuss the CS approach originally suggested by
Baumgarte [8] to solve the equations of CMS. This approach will be referred
as ICS. The stabilized index two problem [9] will be discussed with some mod-
ifications and the implementation details are also explained. We will call this
approach as ECS [4].

4.2.1. Inexact constraint stabilization

The second time derivative of the constraint equation ¢(g) = 0 can be writ-
ten as ¢ =.J§ — v = 0. From control theory, it is well known that even with
small perturbations from zero, the solution of the equation ¢ = 0 can become
unstable; that is it can lead to values of ¢ and ¢ that are far from zero. Ba-
umgarte [8] observed that the modified acceleration equation

¢ +20d + ¢ =0 (4.3)
with o > 0 and f # 0 is stable, hence implying é ~ ¢ ~ 0 even with perturba-
tions of ¢. This observation forms the basis of the ICS presented by Ba-
umgarte. Eq. (4.3) becomes J§ = v — 2a¢d — f7¢ = 7.

This equation along with the dynamical equation will form the linear system

Mo o fe] - [2e]
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and is solved. This leads to a second order ODE (which is equivalent the CMS
vector field on .#), which is then solved numerically using ODE techniques.
The advantages of this approach are that it is simple and can easily be coded.
However, it suffers from important defects such as: (i) a lack of systematic way
to choose 2 and f; (i) the effect of « and § on the accuracy of the numerical
solution; and (iii) the effect of « and § on stiffness. The notion of stiffness in
the context of DAE is explained in Ref. [13].

4.2.2. Exact constraint stabilization
We are concerned with the numerical solution of the system:

q = U7
M(q)o = O(q,v) —J'A, ' (4.4)
#(q) =

The assumption that ¢ is time invariant is only for notational convenience
and all the discussion can be easily extended to the time varying case. Gear et al.
[9] suggested an index two formulation of the system (4.4) by introducing new
variables g, replacing the first equation in Eq. (4.4) by ¢ = v+ J'x and append-
ing the new algebraic equation Jv = 0 to the system i.e., we get:

g=v+J'y,
M(q)o=Q—J'4,
#(q) =0,
Jv=20

and this system was called stabilized index two problem. (Note that the index
of Eq. (4.4) is three.) Also it was proved that if J is full rank, then any solution
of the original index three system (4.4) is a solution of the stabilized index two
system, and conversely. The advantage of this formulation is that the velocity
level constraints are also enforced, thus eliminating the problem of drift of
these constraints. The extra variables are not really much of a disadvantage,
because the computation can be arranged in an efficient way. This way of solv-
ing which avoids unnecessary computations and storage locations will be ex-
plained now.
The stabilized index two system can be rewritten as:

qg=v+ [, ( 5)
b=M"'0(q.v) - M7 J'4, (4.6)
¢(q) =0, 4.7)
Jv=20 (4.8)

where i = M~'J'u. The reason for the choice of i will be explained later. While
implementing this approach the special structure of Eqs. (4.5)-(4.8) should be
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exploited fully. The following procedure describes the basic steps involved in
an integration step from time ¢, to t,,,.

Procedure ECS. Stabilized index two formulation

Step 1: Predict ¢ and v at time ¢,,; from the previous values and obtain ¢’ 1
and of,,.

Step 2: Evaluate Q(¢7,,v,, ) and J(¢’, ).

Step 3: Solve Eqs. (4.5) and (4.7) for f,,, and g,.; by MNR iteration, keep-
ing v,.; = v%,, and using an appropriate BDF for ¢ and 7.

Step 4: Solve Eqs. (4.6) and (4.8) for 4,,, and v, using the same BDF. Here
Any1 18 solved directly from a linear set of equations.

Step 5: Repeat steps 24 once, using the latest computed values of ¢,,, and

va1 for ¢ and ;. This amounts to a single corrector iteration.

It can be proved [10] that the numerical process consisting of steps 1 and 2,
one iteration of steps 3 and 4 is convergent. We note that this algorithm in-
volves the solution of an (m x m) linear system is step 3 for each MNR itera-
tion, and a further linear system in step 4.

It is very important to note that, in the above procedure, we have decoupled
the nonlinear system at position and velocity levels. The solutions of the non-
linear subsystems are then corrected through functional iterations. We might
also consider solving the nonlinear system by MNR method, but treat the lin-
ear system which must be solved at each step by special techniques which ex-
ploit the available sparsity. The idea is to decouple at the level of linear
equations at each MNR iteration. It is shown in Ref. [10] the decoupling at
the level of the nonlinear equations or at the level of linear equations at each
MNR iteration results in similar convergence conditions. We will now discuss
the implementation details of ECS. Before going into details, let us first briefly
discuss about BDF method mentioned in the algorithm.

There are three main approaches to extend the fixed step size multi-step
methods to variable step size. They are: (1) fixed coefficient; (2) variable coef-
ficient; and (3) fixed leading coefficient. The relative advantages and disadvan-
tages of the various BDF methods are explained in great detail in Ref. [14]. As
suggested in Ref. [14] we employ the variable step size variable order fixed lead-
ing coefficient implementation of BDF method to advance the solution from
one time step to the next. That is, the method approximates the derivative
using the kth order BDF, where 0 < £ < 5. On every step, it chooses the order
k, and step size, A,.,, based on the behavior of the solution. The well-known
DAE code DASSL [15] employs this method.

We will now describe the basic formulae used to solve an ODE, say,
¥y = f(y). Suppose we have approximations y,_; to the solution y(t,_;) for
i=0,1,...,k, where k is the order of the BDF method used. We would like
to find an approximation to the solution at time ¢,,,. First, an initial guess
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for the solution and its derivative at ¢,,, is formed by evaluating the predictor
polynomial and the derivative of the predictor polynomial at ¢,,,;. Shampine
[16] explains clearly the reasons for evaluating the derivative as the derivative
of the predictor polynomial. The approximation y,,, to the solution at z,,;
which is finally accepted is the solution of the corrector formula. The formula
used is the fixed leading form of the kth order BDF method.

The values of the predictor ;. , 5%, | and the corrector y,; at t,4, are defined
in terms of polynomials which interpolate the solution at previous time points.
Following the ideas of Shampine and Gordon [17] these polynomials are rep-
resented in terms of modified divided difference. The corrector formula can be
written as [14]

yn-}-l :J?n{kl - (h + )(J’n+1 .V:-{—l)? (49)
where the fixed leading coefficient o, is defined as o, = — §=1 (1/7). We will

now explain the five steps of the algorithm described earlier.

Detailed Procedure ECS

Step 1: Predict ¢ and v at ¢,,; as ¢4, and ¢} _,.

Step 2: Evaluate Q4% ,,t%.,) and J(4%,,).

Step 3: Solve Egs. (4.5) and (4.7) for fi,,, and ¢,.1 by MNR iteration, keep-
ing v,.; = v/, and using the BDF method mentioned above. From Egs. (4.5)
and (4.9), we have g, =¢,,, + Ag, where

Ag = ( as > (CIPH [Ons1 + (M‘.l‘]t)n+lun+1])

and (MUY, =M ' (gn+1)J"(gn+1). We solve for p,,, as follows. Let
y = (U,41h0+1/%) and Eq. (4.7) can be written as ¢(y) = 0. We solve for y from
this relation using MNR iteration process given by

-1
Yyl = —(%) o0, (4.10)

where  (8¢/0y) = J(0gu41)/0y  and  (0gns1/0y) = —(I + (O(M 1Y)/
Ogne1)y)”" M~UJt. Here we make an assumption that the rate of change of
M~'Jt with respect to g, is negligible. This will save the over-head cost of
each integration step and this assumption may at the most lead to slow conver-
gence. Using the above assumption in Eq. (4.10) can be written as

Hoy = ¢, (4.11)

where H = JM~'Jt, &y = y'*! — y'. Since rank(J) = m and M is positive defi-
nite, rank(H) =m. We solve Eq.(4.11) for éy and 7y is updated as
v := y + &y. Update g,.,. The iteration is started with y* = 0.
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Step 4: Evaluate (g1, Vn41). Solve for 4,4 and v, form Egs. (4.6) and
(4.8) using the same BDF method. From Egs. (4.6) and (4.9), we have
Uyt = U2, + Av, where

h, )
Av = < (;1 ) (Uﬁ«rl - M_lQnH + M—IJ%HI)
and Q41 = Q(gn+1, Uny1). Substituting v,.; in Eq. (4.8) we get

He = b, (4.12)
where ¢ = (Lyeihnst /05); b= —Jd; d = (hu1/2) (., — M Qup1) + 12, The

n+1-
linear system (4.12) is solved for ¢. While solving Egs. (4.11) and (4.1+2), the
same factorization of H should be used. This explains the choice of ji as
M~'J'u. Also from the above equations we have v,., = d + M~'J'c. The reason
for doing the computation in this fashion is to reduce the over head cost of the
integration step.
Step 5: Repeat steps 2—4 using the latest values of ¢,,; and v,.,. This

amounts to a single corrector iteration.

Remark 4.1. Note that H = JM~'J'. Computing H this way is not efficient since
it involves three matrix multiplications. We write H = 44" where 4 = JR and R
is Cholesky factor of M (M is positive definite and M = R'R). From R'4! = Jt
we solve for 4' as follows. Solve R'a; = j;, 1<i<m, where a; and j; are the
columns of A' and J*, respectively. For each i this system is a triangular system
of equations and can be solved easily by forward and backward substitutions.
We do a skinny QR decomposition of 4' as 4' = Q1R;, so that H = R{R; and
the two (m x m) linear systems (4.11) and (4.12) are divided into two triangular
subsystems which can be solved easily by forward and backward substitutions.

4.3. Specialization of PA to CMS

In this section we extend the ideas of the PA to the solution of the special
vector field associated with CMS.

Let us briefly describe PA as applied to general vector fields [4]. In the PA, a
correction is applied to a numerical solution of Eq. (2.2) after each integration
step so as to satisfy Eq. (2.1). To describe the approach, it is sufficient to say
what is done in one integration step. Suppose k steps of the numerical solution
of Egs. (2.1) and (2.2) have been done and ¢ = ¢, has been reached. Let x, € .#
be the solution approximant at ¢ = #,. Denote the local solution by x(-), i.e., x(*)
is the solution of Eq. (2.2) with x(#) = x;.. Let t denote the integration toler-
ance. In the (k + 1)st step, the aim is to determine a step size 4; and an
Xps1 € A that satisfy

2(tee1) — x| <1, (4.13)
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where #;1 = & + h. The determination of 4, and x,, is described by the fol-
lowing procedure.

Procedure PA Determination of A; and x;,; by the PA

Step 1: Numerically integrate Eq. (2.2) from x(#) = x; using local error con-
trol (without taking into account Eq. (2.1)) to obtain a step size 4, and an ap-
proximant, ¥, that satisfy

“X(t]H.i) _)_Ck-.‘—l“ < ‘L'/2 (414)
Step 2: Solve the optimization problem

min ||x — %], st glx) =0, (4.15)
and set x4, ; = the minimizer of Eq. (4.15).

Remark 4.2. Step 2 of Procedure PA is stronger than what is really needed. It is
sufficient if x;,; satisfies

g(xpe1) =0, |[xk+1 - xk+1“ < %T. (416)

From [jxes1 — x(tes )] < lPess = Xt || + () — Xt || < 2[x(8511) — Fen |l <7
and Eq. (4.14), it follows that x;,, also satisfies Eq. (4.13). Though the feasibil-
ity problem (4.16) is usually as difficult to solve as the optimization problem
(4.15), it is useful because its solution is simpler to verify.

Let us extend the ideas of the PA to the solution of the special vector field
associated with CMS. There are two key computations which benefit from the
special structure: (i) the evaluation of f(x); and (ii) the manifold-correction in
step 2 of procedure PA. The efficient evaluation of f(x) is explained in [5]. Let
us now elaborate on item (ii). Usually, scaled /; and /. norms are the popular
norms used for measuring integration errors. Shampine suggests a method for
solving Eq. (4.15) when the scaled /; norm is used. Further, he makes the re-
mark that, “if the ODE solver is based on the maximum norm /., one might
prefer to alter it to use the Euclidean norm /, so as to arrive at a linear algebra
problem which has a classical solution”. For the scaled /, norm we suggest a
method which is slightly different but more efficient than Shampine’s method.
A method for the scaled /.. norm which is cheaper than that of the /; norm so-
lution is discussed in Ref. [1].

Consider the scaled /; norm first. Here ||x|| = vx'Wx, where W is a symmet-
ric positive definite matrix. Typically, # is a diagonal matrix, the diagonal el-
ements representing the variable weights applied to the different components of
x. To simplify the notations, let us assume the objective function in Eq. (4.15) is
replaced by half its square, and an appropriate coordinate transformation,

X :xk-H + IX (417)

(T is a nonsingular matrix such that T*WT = [,) is done, so that Eq. (4.15) be-
comes
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min ||X]3/2 st G(X)=0, (4.18)

where G(X) = g(%1 + TX).

The first order necessary conditions for Eq. (4.18) are X — G, (X)u =0,
G(X) =0, where p is the Lagrangian multiplier for equality constraint. We
can use the MNR method to obtain a solution X™.

We will describe the specialization only for the scaled /; norm. The ideas can
be easily extended to the scaled /,, norm. Let ¢ = v,x = (¢,v)" and ||x|, the in-
tegration norm on x, be defined by |x||* = ¢'Wiq + v'Wsp, where W, and W are
positive definite matrices. Compute n x n nonsingular matrices 77 and 7> such
that T'W, Ty = T}, 1> = 1,. (Usually ¥ and W, are diagonal weighting matrices
and so the computation of 7, and T; is easy.) Let 7 = block diag{7, >},
%1 = (§,0)' and X =(Q,V)' so that Eq.(4.17) becomes g =g+ I1Q,
v=10+ V. Also, Eq. (4.18) becomes,

min ([|Q[3 + |V[3)/2 st Gi(Q) =0, G:(Q,¥) =0, (4.19)

where G\(Q) = #(d + T10), G:(Q, V) = J(7 + T, Q)[p + TV,

As mentioned in Remark 4.2 an exact solution of Eq. (4.19) is not necessary.
This allows a simplifying assumption to be made on Eq. (4.19). Typically J(g)
is a slowly varying function of g. Also, since the value of Q in the solution of
Eq. (4.19) is small (||Q||, < 7/2 so that g varies over a small range) we can re-
place G2(Q, V) in Eq. (4.19) by Go(V) = J(g)[p + T V).

The explicit dependence on time ¢ for Gy and G; to simplify the notations. It
is then easy to see that Eq. (4.19) gets decomposed into the following smaller
problems:

min [|Q]}/2, s.t. Gi(Q) =0, (4.20)

min ||[¥]3/2, st Gy (V) =0. (4.21)

Each of these problems can be solved using MNR method. The MNR itera-
tions require the skinny QR decomposition of (Gi),(0) = J(§)T1 and
(G2),(0) = J(§)T>. Since G, is an affine function of ' one MNR iteration will
yield the exact solution of Eq. (4.21). The solution of Eq. (4.20) may require
more than one iteration. A particular assumption on the integration norm
helps to improve the efficiency significantly.

Assumption 4.3. W} and W5, the weighting matrices for the position and velocity
vectors, satisfy the relation W = o®#], where « is a nonzero scalar having the
units of time.

This is a reasonable assumption because it simply requires that the relative
weighting among the position variables is same as the the relative weighting
among the velocity vectors. Then 75 = (1/a)T;. Therefore, if J(§)Ty = QiR is
skinny QR decomposition of J(§)7; then J(g)T> = Q»R, with O, = Oy and
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Ry = (1/&)R, is the skinny QR decomposition of J(§)T>, and so a separate com-
putation of the decomposition of J(g)7, is unnecessary.

Suppose W, and W, are user specified diagonal weighting matrices, but they
do not satisfy #; = o?W,. The following scheme gives a good way of choosing
W, such that: W» = oW, for some «; and if W is replaced by W, then the user
defined error tolerances will be met.

We will combine the above ideas into a Manifold Correction Algorithm de-
noted by C* as follows.

Manifold correction algorithm C*
(a) Start from the point %, provided by the Step 1 of the Procedure PA.
Set I =0,X' =[Q,V]'=0,1, =0
(b) Compute J(3),T1, and B.
Start the MNR iteration process.
(a) 1F / = 0 THEN
e Evaluate 4 = JT;
e Do the QR factorization of 4, i.e., 4' = Q1R
ENDIF
(b) Compute RHS! = G\(Q') = ¢(§ + T1 Q")
(c) Solve: R{R 6y, = RHS1 for du, by solving a pair of triangular systems.
(d) Set:
o it = pl + opy

° QI+] =At#{+l
e g :=q+T1Ql+l
e/:=1+1

(e) Check the corrector failure flag C. (Failure rarely occurs, since x provid-
ed by step 1 of the Procedure PA is very good.)
If(C =F) then indicate Step Failure and go back to Procedure PA with a
reduced step size;
Else CONTINUE -
Compute RHS2 = o?Gy(V) = a?J (§)[0 + TaV]

Solve: R{R,u, = RHS?2 for y, by solving a pair of triangular systems.

@) ¥ i= (1/a)d'p,

®o:=0+NLV

5. Numerical examples

Clearly, it is not possible to single out a particular approach as the most suit-
able for solving any vector field. The choice of an appropriate approach-inte-
gration method combination for a given application has to be made by looking
at special structures in the vector field, by doing the cost analysis [4] and, very
importantly, by studying the performance of various combinations on selected
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numerical examples. Here we only consider vector fields associated with CMS.
The four approaches discussed in this paper are implemented in FORTRAN.
A computer code called Dynamic Analysis of MEchanical Systems (DAMES)
was developed for this purpose.

A carefully considered and explicitly stated experimental design is crucial in
making valid inferences about the performance of the mathematical software.
Developing a sound experimental design involves identifying the variables ex-
pected to be influential in determining the code performance, deciding the appro-
priate measures of performance. Choosing the appropriate performance
indicators is a crucial factor in computational experiments. We have chosen per-
formance indicators which are as independent as possible of the problem at hand.
The following performance indicators are common to all the approaches: CPU-
CPU Time (calculated in Micro Vax — under ULTRIX-32m version 1.2 OS); NF-
Number of Function evaluations (f-evaluations); NS-Number of integration
steps to complete the integration from ¢, to ¢, NJ-Number of J matrix evalua-
tion; NI-Average number of iterations taken to solve the nonlinear square sys-
tem; and N¢-Number of ¢ evaluations. Apart from these, the indicators which
are specific to particular approach are: NFK-Number of LU factorizations (step
1 of Procedure TP); NT-Number of triangular systems solved (step 1 of Proce-
dure TP, solving for u in the PA, step 3 of Procedure ECS); NP-Number of
new TP done. Before discussing the examples let us make the following remark.

Remark 5.1. The selection of the stabilizing parameter o in the case of ICS
approach is a crucial issue and there is no clear general way of choosing it is
available. So in all the examples the parameter « is chosen in the following way.
We start with « = 0 (i.e., integrating just the underlying ODE) and slowly
increase its value. By looking at the solution plots a proper (optimal) « is
chosen. So while actually comparing the performance indicators of this
approach with the other approaches it is very important to keep in mind about
the huge exercise involved in choosing this optimal «.

In the case of TP approach, choosing the ratio y is very important. Number
of new parameterizations done depends mainly on this optimal choice of . The
number of new parameterizations done also depends on p, the rate of conver-
gence [4].

Example 5.2 (Slider-crank mechanism). Consider the elementary model of a
slider—crank mechanism shown in Fig. 1, where the units of length are in
meters. The crank (body-1) rotates without friction about an axis perpendic-
ular to the x—p plane. The connecting rod (body-2) is constrained so that its
center point slides without friction along the x axis. The polar moment of
inertia of bodies 1 and 2 are J; and J, kg-m?, respectively, and the mass of
body-2 is m, (kg). A constant torque 7 = 10 Nm is applied to body-1. The
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Fig. 1. Elementary slider-crank mechanism.

generalized coordinate vector ¢ = (¢, x2, ¢,)". Let us now define the inputs to
DAMES.

. —si -1 —2si
M(q) = diag(J,, my, J2), J(q) = [ Czlsn(gjl 0 2c(s)laniz]’

o) = | i S| o =00,

W q) = [ cos ¢, ¢)f + 2 cos ¢, ¢§]
’ sin ¢, ¢7 + 2 sin ¢, 3
Time interval [ty,7,] =[0,2} s, Jy =1, ., =2, my =2. The CIC are ¢, =
n/4 rad,x; = 2.5779 m, ¢, = —0.3613 rad and zero Initial Velocity. This sys-
tem is simulated using the four approaches PA, TP, ECS, ICS and the results
are tabulated in Table 1.

Example 5.3 (Three link cylindrical coordinate manipulator). In this a three link
coordinate cylindrical manipulator shown in Fig. 2 is considered. We assume
that the joints of the robot are all rigid.

The end of the robot is constrained to move in one-dimensional path, name-
ly a circle in the x—z plane with y being a constant. The constraint function in
Cartesian coordinates is given by (y—0.169=0, ¥ +22~d=0)', d=

91
‘.d-.' g3

@} —  e—

(.,

L

iy

Fig. 2. Three link cylindrical coordinate manipulator.
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Table 1
Slider-crank mechanism
PA TP ECS ICS

TOL=10"¢
NF 286 200 - 266
NS 145 100 580 135
NJ 291 455 468 271
N¢ 233 468 3372 271
CPU 5.7 6.3 7.9 3.8
NI 1.61 2.1 2.2 -
NT 748 693 4817 -
NFK - 225 - -
NP - 4 - -

TOL=10"*
NF 162 121 - 166
NS 83 61 398 83
NJ 167 275 386 171
N¢ 126 287 2340 171
CPU 3.0 39 5.1 1.5
NI 1.51 1.97 2.2 -
NT 410 423 3100 -
NFK - 136 - -
NP - 2 - -

TOL =102
NF 68 55 - 68
NS 36 28 186 36
NJ 73 143 172 73
N¢ 63 165 988 73
CPU 1.8 1.9 31 1.0
NI 1.75 1.97 2.3 -
NT 190 234 1686 -
NFK - 70 - -
NP - 2 — —

0.221423. The generalized coordinate vector g = (g1, ¢2, q3)' as shown in
Fig. 2. The inputs are: M(q) = diag(J; +J» + 3+ m3(g3 + 13)2, my + m3, ms)

2m3(gs + 13)4,45
Q(qaq) = (m2 + m3)g 3
—ms3(gs + 13)43

J(g) = (g3 + 13) cos g, 0 sin ¢,
V= —2(gs + I3)* cos qsing;  2g2 2(gs + I3) cos?qy |’

#(q) = [( (g3 + I3) sing; — 0.169 ]7

gs + 13) cosq + ¢} —d
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(g3 + 13) sing ¢; —2cos q1 4,4,
v(¢,q) = | 2(gs + 15)* cos 2¢) ¢} — 243 — 2 cos* q; G2+ |-
4(g3 + I3) sin 2q1 4,45
Time interval [ty,¢,] = [0,4] s, m» =1 kg,m; =2 kg, J; =0.1 kg-m?, J, =
0.2 kg-m?, J; = 0.1 kg-m?, I; = 0.2 m CIC ¢, = 0.48607, g, = 0.34512, ¢; =
0.16176 and zero initial velocity. The control law for stabilizing the system
to the equilibrium point, g. = (0.436, 0.3, 0.2)", designed using a linearized
approach [18] is given by
u =0.363 — 3.655(¢q; — 0.436) — 4.181(q; — 0.3) + 3.136(g; — 0.2)
~0.455¢, — 2.1674, + 1.0834,
29.4 — 15.938(g; — 0.436) — 18.229(g, — 0.3) + 13.672(q; — 0.2)
—2.167¢, — 10.325¢, + 5.1634;
0.423 + 8.267(¢, — 0.436) + 9.455(q2 — 0.3) — 7.091 (g3 — 0.2)
+ 1.083¢, + 5.163¢, — 2.5814s;.

This system is simulated using the four approaches PA, TP, ECS, ICS and the
results are tabulated in Table 2.

Example 5.4 (Quick-return mechanism). As an example of the many compound
mechanisms that arise in practice, the quick-return mechanism of Fig. 3 that
represents a shaper is considered. With counter-clockwise rotation of the crank
(body-3), cutting occurs as the tool (body-6) moves to the left through the
workpiece. The quick-return stroke of the tool occurs as it moves to the right.
In the model of Fig. 3, each link is modeled as a body. The elements of the
model are as follows: Body-1 is ground, and the body-fixed frames are as
shown in the figure and the constraints are defined in Table 3. The generalized
coordinate vector g = (x,»,yl-,zi)t fori=1,...,6.

M(q) = diag(m;, m;, ml}) fori=1,...,6,

Q(Q» q) = (Ov —mg, 07 01 —myg, Oa Os —msg, ]37 07 —myg, 07 O,
— msg, 01 07 —mesg, 0)13

#(q) (x1,31, @1,% — %2+ 208 @y, y1 — Y2 + 2 8in ¢, % —x3 — 2sin .
Vi~ 3 +2¢08 Py, x3 — x4+ 1.5¢08 ¢35, 5 — 4 + 1.5 sin ¢s.
x5 — X3 + 0.95 cos ¢5 — 2 €08 ¢y, ys — y2 + 0.95 sin ¢5 — 2 sin ¢,
x5 — x¢ — 0.95 cos ¢s,
¥s — ys — 0.95 sin ¢, (x4 — x3) sin ¢, — (34 — y2) cOs @,
sin (¢4 — ¢,), (x6 — x1) sin ¢,
— (s — 1) cos @y, sin (¢ — 1))
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Table 2
Three link cylindrical coordinate manipulator
PA TP ECS ICS

Tol=10"¢
NF 302 378 - 298
NS 151 183 340 150
NJ 308 1034 328 303
N¢ 260 1030 1680 303
CPU 6.1 7.2 9.1 3.1
NI 1.72 31 22 -
NT 822 1370 2218 -
NFK - 390 - -
NP - 4 - -

TOL=10"*
NF 190 210 - 178
NS 95 105 256 90
NJ 195 460 240 183
N¢ 155 472 1396 183
CPU 38 4.5 6.2 1.9
NI 1.63 2.1 2.5 -
NT 498 698 1548 -
NFK - 235 - -
NP - 6 - —

TOL =102
NF 85 110 - 88
NS 43 55 105 45
NJ 91 245 98 93
N¢ 79 220 512 93
CPU 2.0 2.5 3.8 1.1
NI 1.8 1.8 2.0 -
NT 242 394 624 -
NFK - 130 - _
NP - 8 - -

The nonzero elements of the Jacobian matrix J(g) and v(¢,q) can be com-
puted easily.

Remarks: Dynamic analysis is carried out with a slider mass m¢ = 50 kg,
a torque T3 = 165,521 Nm applied to flywheel, and flywheel polar Moment
of Inertia (MI) is 200 kg-m? and with initial velocity zero. The applied tor-
que is selected so that the work done in one cycle of operation (2n7T3) is
equal to the work done in cutting the workpiece. This system is simulated
using the four approaches PA, TP, ECS, ICS and the results are tabulated
in Table 4.
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Fig. 3. Quick-return mechanism.

5.1. Observations, recommendations and conclusions

From the tables it appears that ICS is the most efficient approach. By the
remark (Remark 5.1) the selection of the stabilizing parameter « in the case
of ICS approach is a crucial issue and no clear general way is available. In
the examples we have tried, the parameter « is chosen in the following way.
We start with = 0 (i.e., integrating just the underlying ODE) and slowly in-
crease its value. By looking at the amount of constraint violation and the num-
ber of failed integration steps a proper (optimal) « is chosen. So while actually
comparing the performance indicators of this approach with the other ap-
proaches it is very important to keep in mind the huge exercise involved in
choosing this optimal «. Since the selection of « is highly problem dependent
the ICS is not a suitable approach for general purpose use. Therefore in our
comparison of the different approaches we exclude it.

Table 3

Inertial properties and CIC

No. 1 2 3 4 5 6

Mass 1 100 1000 5.0 30 60

MI i 100 2000 0.5 10 1.5

x 0 0.91822 0 1.35993 0.91296 ~0.01053
y 0 1.77676 2 2.63293 3.77637 3.99923
¢ 0 1.90380 0.4356  1.90380 0.23680 0
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Table 4
Quick-return mechanism
PA TP ECS ICS

TOL =10"¢
NF 2160 3112 - 2082
NS 1080 1556 3574 1044
NJ 2060 9512 3787 2087
N¢ 2054 9482 11232 2087
CPU 77.2 86.3 98.5 522
NI 1.98 2.5 23 -
NT 6190 12012 18612 -
NFK - 4312 - -
NP - 14 - -

TOL=10"*
NF 1272 1876 - 1191
NS 686 938 1932 599
NJ 1173 5724 1860 1196
N¢ 1166 5430 8632 1196
CPU 45.5 58.9 78.7 29.9
NI 1.98 1.99 2.3 -
NT 3524 9876 12712 -
NFK - 2842 - -
NP - 16 - -

TOL =102
NF 712 1012 - 676
NS 356 506 1208 346
NJ 682 3814 1194 681
N¢ 745 3712 5977 681
CPU 243 34.8 48.2 17.1
NI 1.9 2.0 2.1 -
NT 1930 6812 8308 -
NFK - 1864 - -
NP - 10 - -

Based on the data from the numerical examples we make the following obser-
vations. (1) In terms of all the performance indicators, PA is the best, in spite of
the 1.15 factor [4]. (2) ECS takes substantially more integration steps for all the
examples as expected. (3) NJ, N¢, and NT are substantially more for TP and
ECS and so the effort is more. (4) Finally in the case of TP, the parameter NFK
(step 1 of Procedure TP-CMS) reflects the extra effort in the case of TP and is
of the order NS. Also, choosing the ratio u is very important. The number of
new parameterizations done depends mainly on this optimal choice of u. Also
as repeatedly mentioned the number of new parameterizations done also de-
pends on p, the rate of convergence.



R. Sudarsan, S.S. Keerthi | Appl. Math. Comput. 92 (1998) 195-218 217

Finally we recommend the following. To start with, solve the given CMS
using ICS approach with some o # 0. If the integration fails repeatedly to ac-
cept a step and the step size becomes too small and the minimum step size is
reached, and also if the constraint violation is too large, abort this approach.
Now start the more accurate and involved approach PA and use it with stiff-
ness detection in the integration routine. The ideas in Refs. [18,19] can be used
for this purpose. The code DAMES detects stiffness using these ideas. If stiff-
ness is detected, abort PA and use ECS.

We argue that the PA is better than the Parameterization approach. The
chief defects of the Parameterization approach are that: (i) each f evaluation
requires the solution of an m-dimensional nonlinear system of equations; and
(ii) since the parameterization is local, a change in parameterization may be re-
quired during the solution, leading to an integration restart with associated in-
efficiencies. The PA does not suffer from these defects. It requires only one
solution of an m-dimensional nonlinear system of equations in each integration
step (step 2 of procedure PA). Also, it does not require any integration restarts
because it deals with the full ODE system in Eq. (2.2). The Parameterization
approach has the advantage that it integrates only the (» — m)-dimensional sys-
tem of ODEs, whereas the Perturbation approach requires the integration of
the n-dimensional system of ODEs. This advantage, however, is only slight be-
cause the difference in the integration overhead costs of the two approaches is
only O(m) whereas the cost of every extra m-dimensional nonlinear system so-
lution required by the Parameterization approach is O(m?).

References

{i] E.J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems, Basic
Methods, Allyn and Bacon, Newton, MA, vol. I, 1989.

[2] W.O. Schiehlen (Ed.), Multibody handbook, Springer Berlin, 1990.

[3] E.J. Haug, Special issue for numerical integration of DAE of mechanical system dynamics,
Mech. Structures Mach. 19 (1991).

[4] R. Sudarsan, S. Sathiya Keerthi, Numerical Approaches for solution of differential equations
on manifolds, Appl. Math. Comput. 92 (1998) 153-193.

[5] R. Sudarsan, A new approach for the numerical solution of constrained mechanical systems,
Ph.D. Thesis, Indian Institute of Science, Bangalore, 1992.

{6] R.A. Wehage, E.J. Haug, Generalized coordinate partitioning for dimension reduction in
analysis of constrained dynamic systems, Trans. ASME 104 (1982) 247-255.

[7] N.K. Mani, E.J. Haug, K.E. Atkinson, Application of singular value decomposition for
analysis of mechanical system dynamics, Trans. ASME 107 (1985) 82-87.

[8] J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems,
Comput. Methods Appl. Mech. Eng. 1 (1972) 1-16.

[9] C.W. Gear, B. Leimkuhler, G.K. Gupta, Automatic integration of Euler-Lagrange equations
with constraints, J. Comput. Appl. Math. 12 (1985) 77-90.

[10] C. Fiihrer, B. Leimkuhler, Formulation and numerical solution of the equations for

constrained mechanical motion, Technical Report FB-08, DFVLR, Koeln, Germany, 1985.



218 R Sudarsan, S.S. Keerthi | Appl. Math. Computr. 92 (1998) 195-218

[11] W.C. Rheinboldt, Differential-algebraic systems as differential equations on manifolds, Math.
Comp. 43 (1984) 473-482.

[12] P.E. Nikravesh, Computer-Aided analysis of mechanical systems, Prentice Hall, Englewood
Cliffs, NJ, 1988.

[13] S.L. Campbell, B. Leimkuhler, Differentiation of constraints in differential-algebraic
equations, Mechanics Structures Machines 19 (1991) 19-40.

{14] K.R. Jackson, R.S. Davis, An alternative implementation of variable stepsize multistep
formulas for stiff ODEs, A.C.M. Trans. Math. Soft. 6 (1980) 295-318.

f15] L.R. Petzold, A description of DASSL: A differential/algebraic system solver, in: R.S.
Stepleman et al. (Ed.), Scientific Computing, North-Holland, Amsterdam, 1983, pp. 65-68.

{16] L.F. Shampine, Implementation of implicit formulas for the solution of ODEs, SIAM J. Sci.
Statist. Comput. 1 (1980) 103-118.

[17] L.F. Shampine, M.K. Gordon, Computer solution of Ordinary Differential Equations,
Freeman, New York, 1975.

[18] H. Krishnan, N.H. McClamroch, A new approach to position and contact free regulation in
constrained robot systems, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati,
1990.

{19] L.F. Shampine, Stiffness and nonstiff differential equation solvers II: Detecting stiffness with
Runge-Kutta methods, ACM Trans. Math. Soft. 3 (1977) 44-53.

[20] L.F. Shampine, K.L. Hiebert, Detecting Stiffness with Fehlberg (4,5) formulas, Comput.
Math. Appl. 3 (1977) 41-46.



